
The relativistic asynchronous machine - an application of General Theory of Relativity in

electrical engineering?

Up to now applications of General Theory of Relativity are known in astrophysics like the redshift or the

slow run of resting clocks in a gravitational field.

Unusual  seems to be an application in electrical  engineering.  A suitable construction of a relativistic

version  of  the  three-phase  current  asynchronous  motor  could  be  used  as  an  instrument  to  prove  the

equivalence principle and theoretically makes travels to the future possible.

By Tilmann Schneider

Contents

1 Equivalence principle

2 Asynchronous machine

3 Maxwell's equations

4 Relativistic asynchronous machine

5 Coriolis effect

6 Outlook

7 References

8 Imprint

1   Equivalence principle

There is now doubt that General Theory of Relativity (GR) is beside quantum theory the most important basis of modern physics.

It is founded on the so called equivalence principle which can be formulated according to experimental experience in following

different ways:

There is no gravity relative to free falling reference bodies.

Gravitational mass and inertial mass are equal to each other.

This leads to some conclusions:

Gravitational force is equal to inertial force.

All bodies fall with the same speed.

A reference frame connected to a free falling body ist a local inertial frame (IF).

In the local IF valid physical laws are laws without gravity based on Special Theory of Relativity (SR).

By change from local IF to any moved frames (by means of coordinate transformations) physical laws are generally usable

in accelerated frames or in gravitational fields.

Technical generated inertial  forces (e.g.  the centrifugal force in a motor) can be considered as forces of an artificial

gravitational field.

In this article the last conclusion should be of special interest. Is it on principle possible, to generate an artificial gravitational field

by means of  a  “relativistic” motor? This  opportunity seems not  to  be excluded,  because electrical  motors  are  described by

Maxwell's equations. But in present machines these equations are only used in an incomplete form. In a relativistic machine the

complete equations would be necessary, because they are inherently relativistic. Concerning to GR they can be formulated for

accelerated frames. So we must search for a suitable construction. A promising candidate could be the asynchronous machine

with short circuit rotor. Therefore this machine will be briefly discussed in the following chapter.
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2   Asynchronous machine

The asynchronous machine is  an electrical  machine which operates with multi-phase alternating current  to create a rotating

magnetic field. Here Maxwell's equations have the form

E
→

= − gradV − ∂ A
→

∂t
, B

→
= curl A

→
,

curl B
→

= µ0 j
→

,

i.e. by using low frequency currents the displacement current is neglected. It is v ≪ c and the circumfence velocity of the air gap

field ≪ c (quasi-stationary field). Maxwell's equations used in this way imply the validity of Galilei transformation

t = t' ,

φ = ω t' + φ' .

The machine can be used in three different operating modes. These are

Motoring mode

Generating mode

Braking mode

Here an interest is taken in motor application.

The machine contains a resting part (stator) which consists of a stack of iron laminations shaping a thick-walled tubular core.

Inside there are axial slots which contains conducting bars. At the ends they are normaly connected to three windings placed in an

spatial angular of 120° to each other. These windings are fed with alternating currents which have a time angular difference of

120°. So the stator becomes an electromagnet with a rotating magnetic field.

The rotating field gets through a cylinder-shaped stack of laminations called rotor mounted in the stator for rotary motion. Rotor

and stator are separated only by a thin air-gap. In the air-gap the rotating field vector has a radial direction. As a consequence of

the existing windings it consists of a fundamental wave and an infinite number of harmonics. The behaviour of the machine is

determined by the fundamental wave while the harmonics affect a disturbing influence on it. The shape of the fundamental wave

is

Br(φ, t) = m
B0
2

cos(ω0t − pφ), m≥3, natural number. (2.1)

The angular velocity of the field is determined by the quotient of frequency ω
0
 to number of pole pairs p. For a three-phase

current  system m is  equal  to  three.  With regard to the relativistic  machine the four-phase system is  interesting because by

connecting the phases 1-3 and 2-4 to winding pairs its behaviour is equal to a special two-phase system. Only two windings are

placed in an spatial angular of 90° to each other. The alternating currents have a time angular difference of 90°.

The rotor also carries conducting bars lying in axial slots. Manufactured as squirrel-cage rotor or short circuit rotor the bars are

connected at the ends with short circuit rings. A current is generated in the bars by induction, by which the rotor becomes an

electromagnet. As a result the rotor will be pulled with the stator rotating field and accelerates until the machine torque balances

the load torque. Then the rotor speed ω is constant and remains lower than the stator speed in any case. The machine slip s is

defined as

s = 1 − ω
ω0

.

Therefore the denotation “asynchronous”.
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3   Maxwell's equations

Maxwell's equations read in complete form

E
→

= − gradV − ∂ A
→

∂t
, B

→
= curl A

→
(3.1),

curl B
→

− ∂ E
→

∂t
= µ0 j

→
, div E

→
= µ0 ρ (3.2).

In this form this equations can be used in inertial frames and with curved spatial coordinates. For use in accelerated frames with

reference  to  GR  it  is  usual  to  write  them  in  a  covariant  form  by  means  of  tensors.  Then  physical  quantities  appears  as

4-component vectors (first rank tensors) or tensors of second rank. It is suitable that the quantities E, V, t and ρ get the same unit

as B, A, x and j. So for instance the electric field strength will be measured in T (Tesla) instead of V/m. The scalar potential V and

the vector potential A are combined to a electromagnetic potential in form of a (contravariant) 4-vector:

Aα( ) = V Ax Ay Az( ), , , .

Here cartesian coordinates were used. According to that there is a 4-vector current density

jα( ) = ρ jx jy jz( ), , , ,

and a 4-vector for time and space

xα( ) = t x y z( ), , , .

The components of contavariant vectors are indicated by superscript indices. We obtain the covariant vector by multiplication

with the second rank covariant tensor g
αβ

:

Aα = gαβAβ .

In SR the metric tensor reads in cartesian coordinates (written as a matrix):

g
αβ







=












1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1












.

With reference to GR the metric tensor in general depends on time and space and has the caracter of a gravitational or inertial

potential. It has the symmetry property g
αβ

= g
βα

.

Because relativity provides time as additional fourth dimension an remarkable view of Maxwell's equations results: The electric

field E and the magnetic field B, two basic forces of nature, are usually represented as 3-dimensional vectors. In four dimensions

both fields are unified in Maxwell's theory to one electromagnetic field:

F
αβ







=













0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0













.
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This formulation shows that the electric and magnetic field fundamentally are no different physical quantities- they have equal

rights. Now equations (3.1) can be combined to

Fαβ =
∂ Aβ
∂xα

−
∂ Aα

∂xβ
(3.3).

Accordingly equations (3.2) can be combined to

∂
∂xα




g√ F
αβ


= µ0 g√ jβ (3.4),

where g = − det g
αβ





 . It is further on F

αβ
= g
αχ

g
βδ

F
χδ

.

In this generalized Maxwell equations implicitly the metric tensor appears. This gives us a hint to the opportunity how to discribe

a machine which creates a rotary motion by means of an electromagnetic field. This yields a metric causing a centrifugal force.

This facts are typical for rotating field machines like the asynchronous motor.
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4   Relativistic asynchronous machine

To construct the machine we choose a device from high frequency technology, the cylindric cavity resonator. It is axisymmetrical

and here Maxwell's equations are valid in their complete form. Now the high frequent electromagnetic field of the mode TM
110

will be stimulated. This mode is determined by Maxwell's equations and the boundary conditions. It exists in two degenerated

types at the same resonance frequency i.e. both types can be independently stimulated and than they interfere (with J
1
 = Bessel

function of first order, η = normalized radius):

Mode 1:

Ez r φ t( ), , = E0J1 η( )cosω0tcosφ ,

Br r φ t( ), , = E0
J1 η( )
η sinω0tsinφ ,

Bφ r φ t( ), , = E0 J'1 η( )sinω0tcosφ .

Mode 2:

Ez r φ t( ), , = E0J1 η( )cosω0tsinφ ,

Br r φ t( ), , = − E0
J1 η( )
η sinω0tcosφ ,

Bφ r φ t( ), , = E0 J'1 η( )sinω0tsinφ .

The resonance frequency is given by

ω0 = η11
c
R

.

(η
11

 ≈ 3.8317, first zero point of Bessel function of first order, c=speed of light, R=resonator radius). The field structures of both

modes are identical, but they are displaced from each other by an angular of 90°. Therefore we have the case of the two-phase

machine as we have seen in chapter 2. The modes can be stimulated by inductive coupling via two coaxial lines. They are

soldered on holes drilled with an angular difference of 90° into the cylinder case.
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E (t=0)

B (t=0)
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If the second mode is stimulated with a time delay by T/4 to the first, both modes interfere to an electromagnetic rotating field:

Ez r φ t( ), , = E0J1 η( )(cosω0tcosφ + sinω0tsinφ) = E0J1 η( )cos(ω0t − φ) ,

Br r φ t( ), , = E0
J1 η( )
η (sinω0tsinφ + cosω0tcosφ) = E0

J1 η( )
η cos(ω0t − φ) ,

Bφ r φ t( ), , = E0 J'1 η( )(sinω0tcosφ − cosω0tsinφ) = E0 J'1 η( )sin(ω0t − φ) .

These field components result from the electromagnetic potential

Az r φ t( ), , = −
E0
ω0

J1 η( )sin(ω0t − φ) + gauge term (4.1).

It solves the wave equation

ΔAz =
∂2 Az

∂t2
(4.2).

The field rotates with a speed equal to the mode resonance frequency (n
0
=f

0
). The structure of the magnetic field is similar to that

of the conventional asynchronous machine (number of pole pairs p=1). Contrary to the conventional asynchronous machine the

magnetic field is guided by the metallic cylinder case instead of an iron core. The electric field vector is perpendicular to the

magnetic field vector and is parallel to cylinder axis.

At the radius η
0
 ≈ 1.8412 J

1
'(η) vanishes and we have

Br r0 φ t( ), , = E0
J1 η0( )
η0

cos(ω0t − φ) .

Except the magnitude this equation describes a field similar to the air-gap field [equation (2.1) with p=1]. In contrast to the

conventional asynchronous machine the field here only consists of a fundamental wave.

The bottom and top of the resonator have a bearing to mount the short circuit rotor. It consists of two rectangular conducting

loops with equal size. They are crossed in an angular of 90° and solded to each other. Then the rotor is shaped like a crossed

frame antenna (similar to those used for radio bearing sometimes) and is penetrated by the rotating field.

To develop a useful mathematic model we assume that the rotating field is hardly disturbed by the rotor.

The field at η
0
 ≈ 1.8412 is a component parallel to the cylinder axis

Ez r0 φ t( ), , = E0J1 η0( )cos(ω0t − φ) .

Therefore a voltage drops over the conductors which are parallel to the z-axis. Because of Ohm's law and high frequencies for

these conductors the impedance yields to

Z


= Rv + iω0L with Rv = ω0L = l
πd

µ0ω0
2κ√

(l=length, d=diameter and κ=conductivity of the conductor).

With rising frequency the resistance of the short  circuit  rotor increases what is  known as skin-effect  from the conventional

machines.

In the magnetic field B
r
 the currents flowing through the conductors generate a torque based on Lorentz forces. As a result the

rotor will be pulled by the stator rotating field and starts rotating. It accelerates if the machine torque

MA =
[lE0J1 η0( )]2

ω0Rv

is greater than the load torque (caused at least by bearing friction). As a result of decreasing speed difference between rotating

field and rotor induction and also machine torque decreases until it balances load torque. Each load torque causes a determined

constant speed. For these stable operation modes and speeds the torque delivered by the rotor can be computed if the field strength

with view from the rotor is known. Hence a suitable coordinate transformation is necessary between the resting reference frame

(the inertial frame) and the rotating reference frame.
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First we give the tensor descriptions of the electromagnetic and metric field in the resting frame in cylinder coordinates:

F
αβ







=















0 0 0 Ez

0 0 0 Bφ

0 0 0 − r
R

Br

−Ez −Bφ
r
R

Br 0















,

g
αβ





 =













1 0 0 0

0 -1 0 0

0 0 −⎛⎝
r
R
⎞
⎠

2
0

0 0 0 -1













(4.3).

Now we make a statement for a general transformation V between the resting frame S and the rotating frame S':

t = l t' + mφ'

r = r'

φ = n t' + oφ'

z = z'

(4.4).

The coordinates t' and φ' nevertheless have not to be interpreted as “time” and “angle” (General Theory of Relativity).

In tensor formulation the transformation V of the 4-location vector yields xα = Vα
β

x'β  with

Vα
β







=












l 0 m 0

0 1 0 0

n 0 o 0

0 0 0 1












.

The electromagnetic and metric field than transform as follows:

F'
αβ

= V
χ
αVδ

β
F
χδ

,

g'
αβ

= V
χ
αVδ

β
g
χδ

.

Now the problem is to determine the unknown transformation parameters l,  m, n and o. To that we fix the electromagnetic

potential in a suitable way. We put the gauge term in equation (4.1) to zero and postulate that the potential Aα( ) = 0 0 0 −Az( ), , ,

transforms like a tensor of first rank:

A'α = V
β
αAβ ,i. e. A'z = Az (4.5).
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For any curved coordinates or reference frames with Maxwell's equations (3.3), (3.4) we obtain the generalization of the wave

equation (4.2):

∂
∂xα




g√ g
αβ ∂ Az

∂xβ



= 0 .

Thereby the gαβ results from the relationship gανg
νβ

= δ
β
α .

To perform the change from the resting to the rotating frame we replace the unprimed quantites by primed in the wave equation.

Then the solving of the wave equation gives us an opportunity to find the searched transform parameters. In the wave equation we

substitude the g'αβ which still contains the unkown parameters. The statement for the substituted A'
z
 results from (4.5):

A'z r φ' t'( ), , = −
E'0
ω'0

J1 η( )sin(ω'0 t' − φ') = −
E0
ω0

J1 η( )sin(ω0t − φ) (4.6).

Obviously this statement is only possible if the wave equation can be solved with separation so that we get Bessel's differential

equation of first order. But this implies transformation parameters independent from time and space. Because then we obtain two

equations from Bessel's differential equation with a new normalization of the radius on the one hand and with a coefficient

comparison on the other to determine the parameters:

η = r
R

n+oω'0
R
c

lo−mn
(4.7),

1 =
l+mω'0

R
c

lo−mn
(4.8).

Because the first zero point of the Bessel function of first order is always constant (η
11

) with (4.7), (4.8) a relation yields between

ω
0
 and ω'

0
:

ω0
R
c =

n+oω'0
R
c

l+mω'0
R
c

(4.9).

From (4.6) we have the two relationships:

E'0
ω'0

=
E0
ω0

(4.10),

ω'0 t' − φ' = ω0t − φ (4.11).

Also we have to consider that the rotor is moving relative to the stator with the angular velocity ω [see (4.4)]:

φ' = const. ⇒
dφ
dt

= ω ⇒ ω = n
l

(4.12),

φ = const. ⇒
dφ'
dt'

= −ω ⇒ l = o (4.13).

With (4.9), (4.12) and (4.13) we obtain:

ω'0
ω0

= 1−v
1−ω0

m
l

(4.14)

with v = ω
ω0

= n
f0

.

The constant m/l results from the following consideration: The oscillating field with the frequency ω
0
 is a standing wave, which

can be divided in a clockwise rotating wave (frequency ω
0
) and a counter-clockwise rotating wave (frequency ω

0
).
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κ1

A1 0
-φ+κ1

A2 B1
φ+κ2

κ2

B2

When the rotor moves clockwise with angular velocity ω (see fig.) rotor and counter-clockwise rotating field meet at place A
2

and time

t1 =
κ1
ω =

−φ+κ1
−ω0

.

On the other hand the clockwise rotating field passes the rotor at place B
2
 and time

t2 =
κ2
ω =

φ+κ2
ω0

.

As a result we have:

κ1 =
φv

1+v
,

κ2 =
φv

1−v
.

We define the quotient s =
t1
t2

 and get

s = 1−v
1+v

=
ω0(1−v)
ω0(1+v)

=
ω'0
ω0

(4.15).

A comparison of (4.15) with (4.14) results in

m
l

= − v
ω0

(4.16).

With (4.8), (4.12), (4.13), (4.15) and (4.16) we obtain the searched transformation

Vα
β







=
















1
1+v

0 − v

η
11
⎛
⎝⎜1+v⎞⎠⎟

0

0 1 0 0

η
11

v

1+v
0 1

1+v
0

0 0 0 1
















(4.17).

Equation (4.15) also can be written as

1 = s+v
1−sv

.

With s=tanσ and v=tanα we obtain for the relativistic addition of angular velocities:

π
4

= σ + α .

The quantity s is the slip of the relativistic machine. It could also be named as redshift factor because the observer on the rotor

sees a red shifted resonance frequency. According to (4.10) it is also s =
E'0
E0

. This are relationships which are already known
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from the conventional asynchronous machine.

In the special case that the rotor speed is very small against the resonance frequency of the resonator (v≪1) we obtain the

approximation

t ≈ t' − v
ω0

φ' ,

φ ≈ ω t' + φ' .

The transformation (4.17) can be graphically presented in a spacetime diagram with the coordinates t and φ (see figure). When the

axes φ, φ', t and t' are standardised (ω
0
 is included in the standardisation of t and t') then we have

t = 1
1+v

t' − v
1+v

φ' ,

φ = v
1+v

t' + 1
1+v

φ' .

The standardised synchronous angular velocity ω
0
 is presented by a bisecting line in the reference frame S. For the phase term

(4.11) we obtain st'-φ'=t-φ. With v=tanα we have

t = cosα
cosα+sinα

t' − sinα
cosα+sinα

φ' ,

φ = sinα
cosα+sinα

t' + cosα
cosα+sinα

φ' .

This means that the spacetime in transition from S to S' is rotated by an angle α around the origin and is shrinking by a factor

(cosα+sinα). To construct the spacetime (t',φ') geometrically the axes t and φ will be arbitrarily scaled. Now the slip s will be

marked on the t-axis by means of the theorem on intersecting lines. Considering the event P(s,1) in S we obtain t'=1 and φ'=1 in S'

according to the transformation formula. Note that the scaling of the t'-axis and φ'-axis is smaller.  Here the value s for the

standardised angular velocity of the rotating field can now be read from the φ'-axis.

The frame S' can also be called “virtual spacetime”. The coordinates t' and φ' are exactly determined by (4.17) - one can “see”

them (with mathematical calculations) but can not measure them directly (similar to a reflected image in a mirror that one can

only see but can not be measured as a real image). As mentioned above they also can not be interpreted as “time” and “angle”

anymore. However measurable is and a physical meaning has the space time interval given by the first fundamental form

ds2 = c2dτ2 = gµνdxµdxν = g'µνdx'µdx'ν .
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φ

t

1

1

v 1+v1-v

s

1

1

P

s

σ

α

φ'

t'

Now we can give the searched fields in the reference frame S':

F'
αβ







=















0 0 0 sEz

0 0 0 Bφ

0 0 0 − r
R

Br

−sEz −Bφ
r
R

Br 0















(4.18),

g'
αβ







=













g'
00

0 g'
02

0

0 -1 0 0

g'
20

0 g'
22

0

0 0 0 -1













,
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with

g'
00

=
1−(vη)2

(1+v)2
,

g'
02

= g'
20

= −
v⎛⎝1+η2⎞

⎠

η
11

(1+v)2
,

g'
22

=
v2 −η2

η
11

2(1+v)2
.

In case of the resting rotor (v=0) the metric components reduces to those in (4.3).

Now the centrifugal force can be computed which is acting on the moving rotor. To an observer resting on the rotor it appears like

a gravitational force with a radial direction away from the center. In GR these forces are described by Christoffel's symbols:

Γ µ
κ
ν =

gκλ

2








∂g
νλ

∂xµ +

∂g
µλ

∂xν
−

∂gνµ

∂xλ








.

These symbols are the “analogy” to the equations (3.3) of electrodynamics. The only symbol we need for the centrifugal force is

the radial component Γ
0
1

0
 . Additionally we still  need the 4-velocity u'  of the observer on the rotor. Starting from the first

fundamental form

ds2 = g'µνdx'µdx'ν

we obtain u'µ( ) = c
g'

00√
0 0 0









, , ,  . With the motion equations

duκ

dτ
= − Γ µ

κ
νuµuν

then for the acceleration follows

br = − Γ 0
1

0
⎛
⎝u'0⎞⎠

2
= γ2ω2r

with γ = 1

1−(ωr
c )2√

. For ωr≪c we obtain the already known expression from classical mechanics.

The 4-velocity of the observer in the resting reference frame is given by

uν = V νµ u'µ = ut ur
R
r uφ uz⎛

⎝
⎞
⎠, , , = γ c 0 ωR 0( ), , , .

According to SR a body which gets loose from the moving rotor will move along a straight line with the constant 4-velocity

ut = γc, uφ = γωr = γvφ .

From the condition ωr < c we obtain an upper limit for the rotor speed:

v < vmax = 1
η0

≈ 0.543

Hence we get with (4.15) a result for the lowest possible slip

smin =
η0 −1

η0 +1
≈ 0.3.

In comparison to that a conventional induction motor has a typical slip of about 0.01.
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With the electromagnetic field (4.18) we obtain the searched relationship between torque and speed in the inertial frame

M n( ) = MA 1 − 


n
f0




2

√ .

Here we have used a modification of Ohm's law

j'z =
κ E'z

g'
00

r0( )√
.

If the machine's behaviour is like the relationship M(n) another proof of the equivalence principle and hence GR is furnished.

The expressions for the fields still can be extended to all pole-pair-numbers p. Then we have

A'z r φ' t'( ), , = −
E'

p1
ω'

p1
Jp η( )sin⎛⎝⎜ω'p1 t' − p φ'⎞⎠⎟

with s =
1− pv
1+ pv

 and ω'
p1

= sη
p1

c
R

. p is an integer and discrete eigenvalue. Its sign decides in which direction the rotating field

moves. It is obvious also to consider the slip s as an eigenvalue which can vary continuously between 1 (motor standstill) and 0.

Because of an infinite number of eigenvalues p we also obtain an infinite number of “Eigenmetrics”

g'
00

=
1−(vη)2

(1+ pv)2
,

g'
02

= g'
20

= −
p
η

p1

pv

1+⎛⎝

η
p
⎞
⎠

2


(1+ pv)2
,

g'
22

=
p2

η
p1

2

(pv)2 −⎛⎝
η
p
⎞
⎠

2

(1+ pv)2
.

and “Eigentransformations”

Vα
β







=


















1
1+ pv

0 −
p2v

η
p1



1+ pv



0

0 1 0 0

η
p1

v

1+ pv
0 1

1+ pv
0

0 0 0 1


















.
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5   Coriolis effect

To discuss the Coriolis effect we set up the motion equations. The Christoffel's symbols are:

Γ
0
0

1
= Γ

1
0

0
= v2

1+v2
1
r ,

Γ
1
0

2
= Γ

2
0

1
= v

1+v2
1
η

11

1
r ,

Γ 0
1

0 = − 1

(1+v)2
ω2

c2
r ,

Γ 0
1

2 = Γ 2
1

0 = − 1

(1+v)2
ω
c

r
R

,

Γ 2
1

2 = − 1

(1+v)2
r

R2
,

Γ 0
2

1 = Γ 1
2

0 = v

1+v2
η11

1
r ,

Γ 1
2

2 = Γ 2
2

1 = 1

1+v2
1
r .

All remaining Γ µ
κ

ν are equal zero. If ω=0 (rotor standstill) the case of polar coordinates remains:

Γ 2
1

2 = − r

R2
,

Γ 1
2

2 = Γ 2
2

1 = 1
r .

As a result we get the motion equations

du'0

dτ
= -2Γ

0
0

1
u'0 u'1 − 2Γ

1
0

2
u'1 u'2 ,

du'1

dτ
= − Γ

0
1

0
⎛
⎝u'0⎞⎠

2
− 2Γ

0
1

2
u'0 u'2 − Γ

2
1

2
⎛
⎝u'2⎞⎠

2
(5.1),

du'2

dτ
= -2Γ

0
2

1
u'0 u'1 − 2Γ

1
2

2
u'1 u'2 ,

du'3

dτ
= 0 .

Also essential for a mass body ( ds > 0 ) is the side condition

c2 = g'
00
⎛
⎝u'0⎞⎠

2
+ g'

11
⎛
⎝u'1⎞⎠

2
+ 2g'

02
u'0 u'2 + g'

22
⎛
⎝u'2⎞⎠

2
+ g'

33
⎛
⎝u'3⎞⎠

2
(5.2).

We consider a body which departs from the center with a constant velocity υ
r
. In the resting frame S the body then moves free

falling ( br = 0 ) along a straight line (radius), which represents a geodetic line. The 4-velocity is

uν = γ c υr 0 0( ), , ,

with γ = 1

1−⎛⎝⎜
υr
c
⎞
⎠⎟

2
√

. Because of uν = V νµ u'µ then in the rotating frame S' must be:
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u'0 = kγc ,

u'1 = γυr ,

u'2 = -k γωR ,

u'3 = 0 ,

with k = 1+v

1+v2
. The integration x'µ = ∫u'µdτ yields

t' = kγcτ ,

r = γυrτ ,

φ' = -k γωRτ ,

z = 0 .

After an affine transformation geodetic lines again become geodetic lines. Then the trajectory in S' must also be a geodetic line, as

one can check out by insertion in (5.1) and (5.2)

( b't' = b'r = b'φ' = 0 ). Elimination of τ yields

r = −
υr

kωR
φ' (5.3).

The geodetic line is an Archimedean Spiral.

To determine the trajectory of a massless photon ( ds = 0 ) we have to choose another parameter (λ instead of τ) in (5.1). Now the

side condition is

0 = g'
00
⎛
⎝⎜u'0⎞⎠⎟

2
+ g'

11
⎛
⎝⎜u'1⎞⎠⎟

2
+ 2g'

02
u'0 u'2 + g'

22
⎛
⎝⎜u'2⎞⎠⎟

2
+ g'

33
⎛
⎝⎜u'3⎞⎠⎟

2
.

As 4-velocity in S we put:

uν = c c 0 0( ), , , .

Then in the rotating frame S' is

u'0 = kc ,

u'1 = c ,

u'2 = -kωR ,

u'3 = 0 .

The integration x'µ = ∫u'µdλ yields

t' = kcλ ,

r = cλ ,

φ' = -kωRλ ,

z = 0 .

Analogous to (5.3) we get

r = − c
kωR

φ' (5.4).

A  particle  beam radiating  away  from the  center  would  be  bent  against  the  rotor's  motion  like  the  water  jet  of  a  rotating

lawn-sprinkler. Especially (5.4) describes a light bending.
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6   Outlook

Is it generally possible to build such a machine? The challenges in technology which we are faced are huge. The problem is that

the relativistic machine shows extreme operation data: Imagine we have a machine with a few meters in diameter. Such a machine

would have a resonance frequency (= synchronous speed) in the range of 106-107 1/s. Theoretically we would come to very high

speeds. The contrarily point is that the rotor only has a limited solidity - it would inevitably tear itself because of the large

centrifugal  force.  Add  to  this  that  because  of  the  high  resonance  frequency  the  machine  yields  an  extremly  weak,  even

microscopically small torque. The torque could be raised by an increase of the field strength in the resonator. This opportunity is

restricted by 1. the punch through field strength which is a finite quantity and 2. a high loss of power which appears in the starting

rotor and leads to destruction.

Besides this difficulties we could examine interesting physical effects with such a machine:

Time travel.  The machine could be “alienated” for  travelling to the future.  For  the observer  on the rotor  is  dφ'=0.  Then a

relationship results between the observer's proper time and the time of an observer resting in the inertial frame (i. e. beside the

stator):

dτ = 1 − ⎛⎝
ωr
c
⎞
⎠

2√ dt .

There is a difference between the times of both observers. This is appropriate to the term “asynchronous machine”: The machine's

asynchronous behaviour is not only relative to speed but also to the time flow of clocks. The observer on the rotor grows older

more slowly than the resting. The higher the speed or the distance from the center the stronger this effect will be.
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