
The relativistic Quantum Hall Effect

This  effect  is  a  version  of  the  Quantum  Hall  Effect,  which  describes  an  influence  of

gravitation in Hall resistance. This effect could be used to measure the value of the gravity

constant.

By Tilmann Schneider
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1   Quantum Hall Effect

The Quantum Hall Effect makes possible a very precisely measurement of resistance, because the Hall resistance

only depends on nature constants. For derivation we consider an electrical conducting plate whith a thickness d, a

width b and a length l. Lengthwise a direct current I
y
 is flowing through the plate. Perpendicularly the plate is

penetrated by a magnetic field with a strength B
z
. As a result the Lorentz force

KL =
lBzIy

N

is exerted on a single electron (N = number of all electrons in the plate). The electrons which are retained and

exhausted respectively at the boundary cause an electric field E
H

 whose force

KH = − eEH (1.1)

to the electrons compensates the Lorentz force. The result for Hall voltage is

UH = bEH = −
blBzIy

Ne
.

Applies d≪l, d≪b to the plate dimensions there is a 2 dimensional electron gas. The number of electrons is

N =
eblBz

h
i i = 1,2,3,...

(h = Planck's constant). The quantisation is a result of a circle movement of the electrons in the magnetic field

(cyclotron resonance). Quantum mechanically allowed along these circle curves are only standing waves. Then the

result for Hall voltage is

UH = − RHIy

with the Hall resistance

RH = h

ie2
.
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2   Relativistic Quantum Hall Effect

To describe the relativistic Quantum Hall Effect equation (1.1) must be generalised. With the electromagnetic field

tensor F
µν

 the covariant shape of force is

Kµ = − eFµνuν

where

uν( ) = u0 u1 u2 u3⎛
⎝

⎞
⎠, , ,

is the 4-velocity. To speed of light applies the following relation:

c2 = uνuν = gµνuµuν .

To measure the Quantum Hall Effect in a gravity field, we consider a resting experiment facility e.g. on the surface

of earth. Then we have

uν( ) = u0 0 0 0⎛
⎝

⎞
⎠, , ,

and

c2 = g00 u0⎛
⎝

⎞
⎠

2
.

The result for uν is:

uν( ) = c
g

00√
0 0 0









, , , .

Then we obtain

Kµ = − eFµ0u0

or in a to (1.1) analogue component writing:

KH = −
eEH
g

00√
.

The value for g
00

 we get from Schwarzschild metrics

gµν
⎛
⎝⎜

⎞
⎠⎟ =
















1 −
rs
r 0 0 0

0 − 1

1−
rs
r

0 0

0 0 −r2 0

0 0 0 −r2sin2θ
















with the Schwarzschild radius

2



rs = 2GM

c2
.

The result is a modification of the value for R
H

:

R'H = RH 1 −
rs
r√ ≈ RH(1 − GM

rc2
) .

For M and r the mass of earth and the earth radius have to be inserted. For GM

rc2
 we obtain a value of 7·10-10. If we

could increase the precision of measurements of the Quantum Hall Effect up to 10-12 the gravity constant G could

be determined.
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